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THE EFFECTS OF ATROPINE AND PYRIDOSTIGMINE
ON THERMOREGULATION AND WORK TOLERANCE IN THE PATAS MONKEY

INTRODUCTION

Atropine, the most common antidote for anticholinesterase
poisoning (13), suppresses thermoreqgulatory sweating, and even-
tually, evaporative heat loss through its anticholinergic activity
(2) resulting in increased net heat storage (1, 15), decreased heat
tolerance, and reduced exercise performance (4, 6, 7, 9).

Pyridostigmine is used in conjunction with atropine as a
prophylactic against anticholinesterase poisoning by reversibly
inhibiting cholinesterase. Depending on the degree of enzyme
inhibition and state of ordination, these drugs affect
thermoregulation and exercise performance in a negative (11) or
positive way (12).

In a previous study, the physiological effects of 2 neuro-
genic drugs, atropine and pyridostigmine, on the thermoregulatory
effector system of the patas monkeys were evaluated at rest. It
was concluded that this species was an appropriate animal model to
study the effects of neurocactive drugs on temperature regulation
and thermoregqulatory capacity (1, 10). This study expands the
previous work by testing the effects of atropine and pyridos-
tigmine on the thermoregulatory capacity of patas mecnkeys during
exercise in the heat. Prolonged exercise in the heat represents a
condition where th2 metabolic and environmental heat load may be
considerable and provides the body with maximum strain to chal-
lenge the thermorequlatory control system. Since atropine and
pyridostigmine interfere with the heat dissipation mechanisms, the
testing of these neurcactive agents during prolonged exercise in
the heat provides maximum challenge to the thermoregulatory system
and gives information about the thermoregulatory capacity of
primates, and perhaps, man.

METHODS AND MATERIALS

Design of the Exercise Device

The apparatus used to evaluate the exercise tolerance of the
patas monkey was a treadmill wheel (Fig. 1) specifically
constructed to exercise nonhuman primates (8) (Appendix). The
whael, consisting of two 122-cm (48 in.) diameter Lucite rings and
120 aluminum bars, forms a circular cage waich rotated freely on
four bearings. Another ring, affixed to the outside of each lLucite’
ring, was connected to aAlternate aluminum bars to provide
electrical siuimulation for conditioning the animal. The activity




wheel included: 1) a magnetic tachometer pickup to quantitate
speed; 2) an automatic control panel interconnected with the
tachometer to allow the setting of upper and lower speed limics
which the animal had to maintain in order to avoid a sequence of
visual or electrical stimuli; 3) a micrcswitch at the bottom of the
control panel which counted each revoluticn of the wheel and
calculated distance traveled; and 4) a brake to stabilize the wheel
during the rest periods as well as to prevent the animal from
cperating the wheel at higher than predetermined rates.

Exercise Program Operation

Five patas monkeys were trained to operate the treadmill wheel
unt 1l they learned to run at a ninimum rate of 2 miles/hour (mph)
for 60 min (20).

At the end of a 20-week training period, each animal was

capable of completing at least ! h of exercise while control values
of exercising heart rate (HR) and rectal temperature (Tre) were
measured every 15 min by a noninvasive telemetry system. The system
consisted of an AMF Quantum XL transmitter for measuring the HR and
a Mini-Mitter rectal probe transmitter for measurinjy Tre.
HP was recorded by an AMF Quantum digital watch receiver in
beats/min (bpm) while Tre was recorded by a President AXS52 FM
receiver and converted to °C using calibration curves validated in
this laboratory. Total distance covered in niles, average speed in
~iles/hour, and total exercise time were also recorded. wWater loss
was estimated from weight difference measured before and after the
exerc:se test,

The criteria used to establish the exercise tolerance of the
animals and to terminate the standard exercilse test were any cne of
the following: heart rates that approach maximal heart rates for
this species, approximalely 300 bpm; a Tre nigher than 40 °C to
Frotect the animals from heat 1njury: or going J times underspeed
(2 rph) in each of 2 consecutive 15-min periods.

The standard exercise teats were then repeated following
Aatrapine  treatmert and 3 months later after pyrtdostigmine
treatrent,

Two days after each animal completed a standard exercise test
at 2% °C, anothe, exercise tealt wasa carvied cut immediately
followirq a 0.0 ma/¥q ainqle intramuscular ({i.m.} atropine
injection: a dane capable of establishing blood levels of atropire
Amalogous to that produced in humang following an i.m, injection of
2 mp (14, 17). The zaame procedure was repeated J days later at

(s ~
vy -,

pPyridostiqmine study

tne day after a =mtandard axercise test wasa carried out at
}, ¢, each animal was tireated orally with ) separate donses of
P4
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solid 0.4 mg/kg pyridostigmine in a piece of banana. The afternoon
of the next day, the animal repeated the exercise test after
receiving 2 doses of 0.4 mg/kg pyridcstigmine: 1 in the morning and
1 an hour prior to exercise, making a total of 5 doses. The 0.4
mg/Kg pyridostigmine dosage is capable of reducing checlinesterase
plasma levels by 25 to 30% of normal immediately after the second
dose and keeps the levels down throughout the treatment period (1).

Treatment of Data

The results are presented as means and standard deviation.
They were analyzed by a two~way (condition x time) analysis of
variance (ANOVA) with repeated measures on both factors. Turkey's
test of critical differences was alsc used where appropriate. All
significant differences are reported at p < .05, unless otherwise
noted.

RESULTS

The effects of atropine at 25 °C are shown in Table 1 and
Figures 2 and 3.

TABLE 1. GUMMARY OF ATROPINE RESULTS DURING EXFRCISE AT
25 °C AND 35 °C

Water loss Time Distance Speed
(g/min) (min) (mi) (mph)
Ta = 25 °C
Cortrol 1.2 177.6 4.8 1.6
+1.7 +39.7 +1.2 $0.0%
Atropine 1.3 146.8* 4.0 1.6
+1.6 +30.5% +0.9 $+0.1
Ta = 35 °C
Couontrol 2.3 149.6 3.6 1.9%
$2.1 +37.1 +0.8 10.1
Atropina 1,89 Re.0V 2.5 1.7e
42.) +16.9 +0.% +0.1
[} p .05
" p e 08

Atropine sigqnificantly increased fatique and shortened the
exercise tolerance time by approximately 310 min. No siqnificant
1ifference was found in the amount of water loam, distance traveled
or the animals' averaqe npeed., Figurem 2 and ) show that mean MR
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and Tre responses increased from rest tc exercise. While HR during
exercise increased slightly over time in the contrcl experiments,
atropine administration caused a further increase in HR and was
significantly greater at €0 min when compared to the no treatment
condition. In addition, atropine was associated with a significant
increase in Tre by the end of the first 30 min of exercise and
remained 0.5 °C higher at 60 min of exercise, significantly
different compared to the respective no treatment period. Mean
final HR (F-HR) and Tre(F-Tre) values were not significantly
different from the respective values in the control experiments.

The effects of atropire at 35 °C appear in Table 2 and Figures
4 and 5. At this environmental temperature, atropine produced a
reduction in water loss rates (22%) and a reduction in total
exercise time of 65 min less than che control value. Censequently,
the distance covered in miles was also less (p < .06). It was also
interesting that average speed in mph was slightly but
significantly faster in the atrcpine experiments as compared to the
controls. As illustrated in Fiqure 4, the mean HR response
increased from rest to exercise and at the end of exercise. The
mean HR response at 60 min of exercise decreased slightly from that
at 30 min of exercise due to the fact that 2 animals reached their
exercise tolerance before the first hour of exercise and only the
mean HR response for 3 animals is shown. The mean HR response in
the atropine experiments was higher at 60 min of exercise and
before the end of exercise compared to the respective control
experimental periods. Figure 5 shows the mean Tre responses in the
heat continued to increase throughout the exercise time. However,
atropine administration caused further increase in the rate of heat
storage, compared to the respective no treatment exercise period.

Table 2 shows pyridostigmine treatment tended to increase
water loss (11%) and was associated with an average exercise time
of 61 min longer than the control value and consequently longer
distance traveled in niles. Average speed in mph was slightly but
signiticantly higher in the pyridostigmine experiments compared to
the controls. Final heart rate (F-HR) and final Tre (F-Tre)

responses were not significantly different from those in the
control experiments.

TABLE 2. SUMMARY OF PYRIDOSTIGMINE EFFECTS DURING EXERCISE AT
35 °C

R-HR P-HR R-Tre PF-Tre Water Time Distance Speed
Loss

{bpm) _ (bpm) (°C) (°c) (g/min) (min) (mi) (mph)

Control 160.4 223.0 137.9 39.3 1.9 115.0 3.0 1.5
+10.9 +11.0 40.1  +0.2 +3.0 +29.0 +0.8 40.1

Pyrido~ 160.6 214.2 37.7 39.0 2.1 175.0* 5.0 1.7

stigmine $10.7 411.8 +0.2 +0.3 +3.0 +29.0 +U.9 +0.1

*p < ,0%

R=Resting

FeFinal
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DISCUSBION

The results of these studies showed that the physiologinral
cffects of atropine in exercising patas monkeys were similar to
those reported for humans. The suppressed sweating capacity of the
atropine significantly affected the heat loss nmechanisms of the
exercising animals in the heat as indicated by the 43% reduction in
water loss. On the contrary, during exercise at thermoneutral
environment, the amount of water loss was not significantly
different between the atropine and control experiments. During
exercise, there is enhanced release of epinephrine by the adrenal
medulla which accounts for increased sweating (24): a fact which at
neutral environment seems to completely counteract the negative
effects of atropine on sweating. The suppressed sweating induced
by atropine generally resulted in increased heat storage causing
considerable thermal strain on the animals. It is speculated to
account for the reduced time that the animals could exercise. In
addition, exercise in the heat caused much faster rise in the rate
of neat storage on the animal's body with potentially greater
performance decrements and increased risks for heat injuries. For
instance, exercise in the heat, for all animals but one, was
terminated by the investigator when the Tre was in excess of 40 °C.
Conversely, at the thermoneutral environment, the animals took
longer to reach exercise tolerance. The time that elapsed between
the first signs of discomfort and the tima they reached the
criteria for termination of exercise (see Methods and Materials)
was also much 1longer. At this environmental temperature, all
animals but one were stopped from exercising because they fulfilled
the criterion concerning the speed limit that should be sustained.
Although mean F-Tre response at 25 °C was not significantly
different in the control and atropine exercise experiments, these
data revealed that animals with low exercise toierance (exercise
time < 2.30 h) demonstrated much higher F-Tre values in tlre
atropine experiments (40.2 °C vs control value of 39.5 °C). This may
have to do with the pharmocokinetics of atropine in the plasma
(half-life 2.5 h) and the fact that the exerclse time of the
animals varied between 1.30 and 5.0 hours,

Mahoney (22) investigated the resnonse of a single patas
monkey while running in the heat and reported that at any given
temperature the onset of exorcise caused a threefold increase in
conductance reqgardless of the particular speed. Some of this
increase could be assoclated with increased blood flow to the
working muscles, and previous work from this laboratory in resting
animals showed that atropine induced peripheral vasodilation as
indicated by increased whole-body conductance (1). Similar
increases in conductance were also found in exercising human
subjects after atropine (9, 19). Therefore, {t was speculated that
increased blood pooling in the pei1 phery to compensate for the
decreased heat dissipation from sweating would have agqravated the
problem by compromising blood flow to tha exercising muscles and
would have reduced their exercise capacity.

10




Although atropine blood levels were not measured in this
study, results show that the time course for the physiological
effects of atropine on heart rate and heat loss mechanisms, as
indicated by increase in Tre, was between 30 to 60 min post-
injection. This finding agrees with the resnits found by other
investigators involving a variety of atropine dosages injected in
human subiects (5, 6, 21, 23, 25). Furthermore, Craig (4) reported
that 2 mg of atropine, a dose analogous to the ore administered in
the present study, resulted in nearly maximal vagal inhibition. 1In
this study, mean final heart rate increased by .6 bpm and mean
final rectal temperature increased by 0.7 °C under the influence of
atropine during exercise in the heat. Various results, ccrn<erning
the amount of increase in HR and Tre, have been found in human
studies (4, 21, 25). Direct comparisons between the studies are
tenunus because of differences in environmental conditions, subject
variability, exercise mode, and protoceols used.

The effects of pyridostigmine treatment have been reported in
rats but not in primates. Francesconi et al. (11) reported that in
rats, pharmacological acute doses of pyridostigmine dgreati-
affected exercise performance, thermoregqulation, and chemical
indices of heat/exercise injury following 643% cholinesterase inhi-
bition. In another study, Francesconi et al. (12) reported that
moderate cholinesterase inhibition of 23% and 39% attenuated
several of the acute responses and had no debilitating effects on
physical performance and thermoregulation during exercise in the
heat. They reached the conclusion that a rather narrow range of
cholinesterase inhibition must be achieved before the physiological
and protective effects of pyridostigmine are observed. Their
findings agree with the results found in this study. We found that
oral administration of 0.4 m®mg/kg pyridostigmine improved
thermorequlatory function and was associated with a 60 min longer
average exercise time than the control value.

11
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APPENDIX

REPORT ON THE MEASUREMENT OF ENERGY EXPENDITURE
BY INDIRECT CALORIMETRY IN PATAS8 MONKEYS
AT REST AND DURING EXERCISBE

A continuocus flow indirect calorimetry system was developed
consisting of a metabolic cage in which the monkey resided. Fresh
air was pulled %through the cage by a fan and the airflow out was
measured by a turbine flow-rate meter, Airstream temperature and
water vapor pressure were measured befur2 a small aliquot of gas
was sampled for oxygen and carben dioxide content (Fig. A-1l).
Calculation of metabolic parameters from the measurement of
0,,C0,,P,,., ,and temperature was done using the algorithms of
Brown 3 whxch account for the storage (integration) of gas
volumes in *he metabolic cage. As an addition to the monkey
exercising wheel, an airtight enclosure was developed which used
the calorimetry system for metabolic rate measurement during
exercise.

Five patas morkeys underwent a week of metabolic measurements
in the metabolic cage. These same 5 monkeys then underwent a week
in the metabolic cage combined with 3 exercise perxods of 3 h,
Typical metabolic rates during daylight hours were 40 W/m? at rest
and 70 to 80 wW/w? during exercise. Table A-1 illustrates the
calorimetry data fcr daily oxygen, carbon dioxide, and metabolic
rates for each monkey at rest and with exercise. It should be noted
that the W/m’ are on a per minute basis and are averages for an
entire day including the dark period in which metabolic rates may
go as low as 16 to 18 W/m?.
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Figure A-1. Monkey indirect calorimetry system,

TABLE A-1. CALCRIMETRY DATA AVERAGL DAILY O, AND CO, AND
MINUTE METABOLIC RATE.

REST

_MONKEY VOO, L/4aY YO, L/day RO Natis/m!
Flo0 64.5%) 85.67 0.7% J6.40
F 9 75.91 76.59 0.99 25.60
M5584 6£2.67 91.69 0.68 29.26
B313 67.30 75.76 0.91 32.99
M9207 55.85 77.58 0.77 32.70
Total per day 126.26 400.29 0.82 31.40
Avg/min J1.40

PLUS EXERCISE

F10FX 80.27 92.53 0.87 40.46

F 9EX 7). 4) 93.10 1.00 31.21
M5584 EX 72.30 77.81 0.9) 26.42
B33l EX 73.11 74.96 0.98 34,04
M9207 EX h6. 46 71.4% 0.93 13.51

Total per day Ins. %9 409.84

Avg/min = 33.1)
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The results of the study using the newly designed continuous
flow indirect calorimetry system for quantitation of energy
expenditure in unrestrained monkeys is significant in light of on-
going studies of the effects of neurcactive agents on temperature
regulation, metakolism, and work tolerance,.

This is the first study that reports resting metabolic rate
data in unrest:i~ined patas monkeys. It is highly significant that
the FQ and metabolic rate during daylight hours measured with our
new calorimetry system are of the same order of magnitucde as those
wnich we have previocusly reported (16, 18) in chair-restrained
animals. It should alsoc be noted that the RQ's recorded in the
exercise experiment are those which one would predict in an
exercising animal (Table 1). Furthermore, the metaboclic rate
guantitates for the first time that,with the exercise whesl, we
are inducing metabolic rates that are approximately twice those of
the resting level. The matabolic rates during the exerciie period
were significantly higher than the daylight resting netaholic
rates. Finally, it should be noted that in terms of 24 h energy
expenditure, 3} exercise periods of 3 h duration during a 24 h
pericd did not result in a significant increase in the metabolic
rate when averaged over a 24 h period (Table A-1l).

It is clear that the technology that has been developed will
be very useful as we continue to examine the short- and long-term
ef.ects of neurcactive agents on thermoregulation, metabolism, and
exercise tolerance in nonhuman primates.
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